
Spring Security for REST APIs

September 2020



I’m Josh Cummings, a maintainer of Spring Security

Welcome!

You’ll find me at
https://{gh}/spring-projects/spring-security
https://{gh}/terracotta-bank/terracotta-bank

https://{gh}/eugenp/tutorials

Not that Josh… :)

https://github.com/spring-projects/spring-security
https://github.com/terracotta-bank/terracotta-bank
https://github.com/eugenp/tutorials


What are your goals?

I’m am building a 
REST API and need to 
secure it with OAuth 
2.0

I want to get a better 
understanding of 
Spring Security in 
general

I need to modernize 
the security of an 
existing REST API

I want to understand 
the tradeoffs of various 
REST API security 
strategies



Local Authentication
Who Is It?



https://github.com/jzheaux/oreilly-spring-security-rest-apis

• Fork it

• Each branch is a chapter

• Each commit is the “answer” to an exercise

• Unit tests are there to check your solution

How the App Is Organized

https://github.com/jzheaux/oreilly-spring-security-rest-apis


• Remove the SecurityAutoConfiguration exclusion
• Restart the app
• Run Module1_Tests - the first test should pass

• Report on 2-3 differences with how the app behaves now that 
Spring Security is added. For example:

• Try http://localhost:8080/goals, before and after
• Try http://localhost:8080/2l3kne23, before and after

This exercise should take between 3-5 minutes

Exercise: Adding Spring Security

http://localhost:8080/goals
http://localhost:8080/2l3kne23


The Security Filter Chain

Image Courtesy of the Spring Security Reference



Filter Order

{Defensive 
Filters

Authentication 
Filters

Authorization 
Filters

Image Courtesy of the Spring Security Reference



Basic Authentication Filter

Image Courtesy of the Spring Security Reference



• Create a @Configuration class
• Create a Spring Security User using user/password
• Expose InMemoryUserDetailsManager as a @Bean

• Run Module1_Tests - the second test should pass
• Try the /goals endpoint
• Share one of the app’s goals that you will definitely do! :)

• Stretch: Configure with a hashed password

This exercise should take between 5-7 minutes

Exercise: Adding UserDetailsService



Customizing the Principal

UserDetails UserDetailsService

? MyUserDetailsService Users



Customizing the Principal

UserDetails

User

OR

UserDetails

UserBridge

User



• Implement UserDetailsService, calling UserRepository
• Return an instance of a private inner bridge class
• Replace the exposed UserDetailsService with this one
• Add some users into GoalsInitializer

• Run Module1_Tests - the third test should pass
• Try the /goals endpoint
• Report on your new users’ goals

This exercise should take between 7-10 minutes

Exercise: Customizing Principals



• Update GoalController#make to lookup the username
• Use @CurrentSecurityContext

• Run Module1_Tests - the fourth test should pass
• Try the POST /goal endpoint
• Report on how the POST /goal endpoint behaves

This exercise should take between 3-5 minutes

Exercise: Using Principals



How secure is this?



Local Authorization
Is the Request Allowed?



• Add @EnableGlobalMethodSecurity
• Add @PreAuthorize to each controller method

• What authority do you think each one should require?

• Run Module2_Tests - the first test should pass
• Try the /goals endpoint with the haswrite user and report
• Let’s discuss: Which is better, filter- or method-based?

• Stretch: Try adding filter-based to get a comparison

This exercise should take between 5-7 minutes

Exercise: Authorizing Requests



• Add @PostAuthorize annotations confirm ownership

• Run Module2_Tests - the second test should pass
• Try looking up a goal that doesn’t belong to your user
• Let’s discuss: What’s the appropriate response code?

This exercise should take between 5-7 minutes

Exercise: Insecure Direct Object 
References



• Add @PostFilter to /goals to filter on ownership
• Add @Query to filter on ownership at the query level

• Run Module2_Tests - the third test should pass
• Try listing goals for different users
• Let’s discuss: Where should the filter be placed?

This exercise should take between 5-7 minutes

Exercise: Filtering Results



• Create the GoalAuthorizer bean together with Josh
• Use the authorization bean in your annotations

• Run Module2_Tests - the fourth test should pass
• Try adding a record - why doesn’t it work?
• Time for general Q&A and then a break!

This exercise should take between 10-12 minutes

Exercise: Authorization Beans



Ingress
Is the Request Safe?



.csrf().disable()

The Most Popular Spring 
Security Hack



• Add the @CrossOrigin annotation to /goals
• Add cors() to the Spring Security DSL

• Run Module3_Tests - the two tests should pass
• Stand up the sample app and click the button to see the 

response
• Stand up the malicious app and see if you can add a goal
• Let’s discuss: What are the security tradeoffs for turning on 
withCredentials?

Exercise: Configuring CORS



Distributed Authorization 
with JWT
A Step Towards Security Convergence



JWT Authentication Flow
Client Resource Server Authorization Server

/private

401 Unauthorized

/authoriz
e

access_token

/private
with access_token

200 
OK

Verify using keys

obtain keys



• Add the spring-security-starter-oauth2-resource-server
and spring-security-oauth2-jose dependencies

• Add spring.security.oauth2.resourceserver.jwt.issuer-uri
• Add oauth2ResourceServer to the DSL and specify jwt

• Run Module4_Tests - the first test should pass
• Stand up the authorization server
• Obtain a token using the token-for script
• Try the /goals endpoint with the token

This exercise should take between 5-7 minutes

Exercise: Bearer Token Auth



• Use more than one component
• Don’t inherit unwanted behavior
• Avoid spending your inheritance

Pulse Check: Composition

v
s



How are you 
representing scopes 
at your company?



• Modify UserRepositoryJwtAuthenticationConverter to turn 
the scope attribute into a list of GrantedAuthority instances

• Specify the converter in the Spring Security DSL

• Run Module4_Tests - the second and third tests should pass
• Try the POST /goal endpoint

• Did it work? Why?

This exercise should take between 5-7 minutes

Exercise: Canonicalize Authorities



Programmatic vs Declarative



Declarative
Decoupled from business 
logic

Logicless or low-logic

Framework-managed

Woven into business logic

The full Java language

You-managed

Programmatic



• Modify GoalController#read() to check the 
SecurityContextHolder for the user:read authority.

• If present, add the user’s full name to the result

• Run Module4_Tests - the fourth test should pass
• Try the GET /read endpoint to see the full name included
• Let’s discuss: Is there a way to avoid programmatic security?

This exercise should take between 5-7 minutes

Exercise: Programmatic Security



secure = false

Second Most Popular Spring 
Security (Testing) Hack



• Change the existing failing unit test by including the appropriate 
scope in the test configuration

• Add a test of your own

• The tests should pass
• Share what you tested on the discussion page

This exercise should take between 5-7 minutes

Exercise: Testing



Poll: Multi-tenancy

A user can log in to your app in multiple ways that all resolve to the same user 
(for example, Login in with Facebook)

A user can login and they are tied to a specific SaaS instance of your product (for 
example, a user logging in with me@nike.com would redirect them to your 
nike.yourapp.com instance)

A user can be logged into multiple instances of our app at once

A tenant gets full control over the authentication experience of their user base

We don’t support multiple tenants at this time

mailto:me@nike.com


Distributed Authorization 
with Opaque Tokens
JWT’s more secure, less performant cousin



Opaque Authentication Flow
Client Resource Server Authorization Server

/private

401 Unauthorized

/authoriz
e

access_token

/private
with access_token

200 
OK

/introspect

active: true



JWT
By Value

Occasional Authorization 
Server calls

Client can see values

Can’t expire immediately

By Reference

Frequent Authorization 
Server calls

Client can’t see values

Can expire immediately

Opaque



• Add the com.nimbusds:oidc-oauth2-sdk dependency
• Add .opaquetoken.introspection-uri, .client-id, and 

.client-secret
• Change oauth2ResourceServer to specify opaquetoken

• Run Module5_Tests - the first test should pass
• Try the /goals endpoint with the token

This exercise should take between 5-7 minutes

Exercise: Opaque Tokens



• Modify the UserRepositoryOpaqueTokenIntrospector add a 
GrantedAuthority called goal:share that’s derived from 
whether or not the User has a premium subscription.

• Run Module5_Tests - the second and third tests should pass
• Try the POST /share endpoint to share a goal with another user

This exercise should take between 5-7 minutes

Exercise: Normalize Authorities



Identity Federation

Your App

LinkedIn

Google

Facebook

One User Multiple Sources



SaaS

Your App

Okta

One User One Source

Your App

Your App

nike.yourapp.com



SaaS + Whitelabeling

Your App Okta

One User One Source

Your App

Your App

Okta

Okta

nike.yourapp.com



• Complete the JwtOpaqueTokenAuthenticationManagerResolver 
so it looks for a header called tenant. If the tenant is one, return 
the jwtAuthenticationManager. Otherwise, return the 
opaqueTokenAuthenticationManager.

• Change the DSL to use the authenticationManagerResolver 
instead of jwt.

• Run Module5_Tests - the fourth test should pass

This exercise should take between 5-7 minutes

Exercise: Multi-tenancy



Egress
Collaborating with Other REST APIs



Browsers 
Propagate
Cookies

Authorization: Basic
creds

Authorization: Bearer
creds

But Not



• Remove the withCredentials attribute from @CorsMapping

• Start up the front-end application and navigate to 
http://localhost:8081/bearer.htm to confirm that the application 
works

• Run Module6_Tests - the first test should pass

This exercise should take between 5-7 minutes

Exercise: CORS

http://localhost:8081/bearer.htm


• Complete the WebClient configuration by including 
ServletBearerExchangeFilterFunction as a filter.

• In GoalController, replace the UserRepository dependency 
with UserService.

• Change the read() method to find the user’s full name using
UserService.

• Run Module6_Tests - the second test should pass

This exercise should take between 5-7 minutes

Exercise: Passing the token



ServletOAuth2AuthorizedClient
ExchangeFilterFunction

What If I Need to Renew the 
Token?



Thank you!

https://{gh}/jzheaux/oreilly-spring-securing-rest-apis
https://{gh}/spring-projects/spring-security
Josh Cummings - @jzheaux

https://github.com/jzheaux/oreilly-spring-securing-rest-apis
https://github.com/spring-projects/spring-security
https://twitter.com/jzheaux


• Click to edit master text styles
• Second level

• Third level
• Fourth level

Click to add slide title



Click to add slide title
for two-line title
• Click to edit master text styles

• Second level
• Third level

• Fourth level



• Click to edit master text styles
• Second level

• Third level
• Fourth level

Click to add slide title
Click to edit subhead



Click to add slide title
Click to edit subhead 1 Click to edit subhead 2
• Edit master text styles

• Second level
• Third level

• Fourth level
• Fifth level

• Edit master text styles
• Second level

• Third level
• Fourth level

• Fifth level



• Click to edit master text styles
• Second level

• Third level
• Fourth level

Click to add slide title



• Click to edit master text styles
• Second level

• Third level
• Fourth level

Click to add slide title



Click to add slide title
Text goes here



Click to add slide title
Text goes here



Click to add slide title



Title
Click to edit text here. Click to edit text here.

Title



Thank you


