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I’m Josh Cummings, a maintainer of Spring Security

Welcome!

You’ll find me at
https://{gh}/spring-projects/spring-security
https://{gh}/terracotta-bank/terracotta-bank

https://{gh}/eugenp/tutorials

Not that Josh… :)

https://github.com/spring-projects/spring-security
https://github.com/terracotta-bank/terracotta-bank
https://github.com/eugenp/tutorials


What are your goals?

I’m am building a 
REST API and need to 
secure it with OAuth 
2.0

I want to get a better 
understanding of 
Spring Security in 
general

I need to modernize 
the security of an 
existing REST API

I want to understand 
the tradeoffs of various 
REST API security 
strategies



Local Authentication
Who Is It?



https://github.com/jzheaux/oreilly-spring-security-rest-apis

• Fork it

• Each branch is a chapter

• Each commit is the “answer” to an exercise

• Unit tests are there to check your solution

How the App Is Organized

https://github.com/jzheaux/oreilly-spring-security-rest-apis


• Remove the SecurityAutoConfiguration exclusion
• Restart the app
• Run Module1_Tests - the first test should pass

• Report on 2-3 differences with how the app behaves now that 
Spring Security is added. For example:

• Try http://localhost:8080/goals, before and after
• Try http://localhost:8080/2l3kne23, before and after

This exercise should take between 3-5 minutes

Exercise: Adding Spring Security

http://localhost:8080/goals
http://localhost:8080/2l3kne23


The Security Filter Chain

Image Courtesy of the Spring Security Reference



Filter Order

{Defensive 
Filters

Authentication 
Filters

Authorization 
Filters

Image Courtesy of the Spring Security Reference



Basic Authentication Filter

Image Courtesy of the Spring Security Reference



• Create a @Configuration class
• Create a Spring Security User using user/password
• Expose InMemoryUserDetailsManager as a @Bean

• Run Module1_Tests - the second test should pass
• Try the /goals endpoint
• Share one of the app’s goals that you will definitely do! :)

• Stretch: Configure with a hashed password

This exercise should take between 5-7 minutes

Exercise: Adding UserDetailsService



Customizing the Principal

UserDetails UserDetailsService

? MyUserDetailsService Users



Customizing the Principal

UserDetails

User

OR

UserDetails

UserBridge

User



• Implement UserDetailsService, calling UserRepository
• Return an instance of a private inner bridge class
• Replace the exposed UserDetailsService with this one
• Add some users into GoalsInitializer

• Run Module1_Tests - the third test should pass
• Try the /goals endpoint
• Report on your new users’ goals

This exercise should take between 7-10 minutes

Exercise: Customizing Principals



• Update GoalController#make to lookup the username
• Use @CurrentSecurityContext

• Run Module1_Tests - the fourth test should pass
• Try the POST /goal endpoint
• Report on how the POST /goal endpoint behaves

This exercise should take between 3-5 minutes

Exercise: Using Principals



How secure is this?



Local Authorization
Is the Request Allowed?



• Add @EnableGlobalMethodSecurity
• Add @PreAuthorize to each controller method

• What authority do you think each one should require?

• Run Module2_Tests - the first test should pass
• Try the /goals endpoint with the haswrite user and report
• Let’s discuss: Which is better, filter- or method-based?

• Stretch: Try adding filter-based to get a comparison

This exercise should take between 5-7 minutes

Exercise: Authorizing Requests



• Add @PostAuthorize annotations confirm ownership

• Run Module2_Tests - the second test should pass
• Try looking up a goal that doesn’t belong to your user
• Let’s discuss: What’s the appropriate response code?

This exercise should take between 5-7 minutes

Exercise: Insecure Direct Object 
References



• Add @PostFilter to /goals to filter on ownership
• Add @Query to filter on ownership at the query level

• Run Module2_Tests - the third test should pass
• Try listing goals for different users
• Let’s discuss: Where should the filter be placed?

This exercise should take between 5-7 minutes

Exercise: Filtering Results



• Create the GoalAuthorizer bean together with Josh
• Use the authorization bean in your annotations

• Run Module2_Tests - the fourth test should pass
• Try adding a record - why doesn’t it work?
• Time for general Q&A and then a break!

This exercise should take between 10-12 minutes

Exercise: Authorization Beans



Ingress
Is the Request Safe?



.csrf().disable()

The Most Popular Spring 
Security Hack



• Add the @CrossOrigin annotation to /goals
• Add cors() to the Spring Security DSL

• Run Module3_Tests - the two tests should pass
• Stand up the sample app and click the button to see the 

response
• Stand up the malicious app and see if you can add a goal
• Let’s discuss: What are the security tradeoffs for turning on 
withCredentials?

Exercise: Configuring CORS



Distributed Authorization 
with JWT
A Step Towards Security Convergence



JWT Authentication Flow
Client Resource Server Authorization Server

/private

401 Unauthorized

/authoriz
e

access_token

/private
with access_token

200 
OK

Verify using keys

obtain keys



• Add the spring-security-starter-oauth2-resource-server
and spring-security-oauth2-jose dependencies

• Add spring.security.oauth2.resourceserver.jwt.issuer-uri
• Add oauth2ResourceServer to the DSL and specify jwt

• Run Module4_Tests - the first test should pass
• Stand up the authorization server
• Obtain a token using the token-for script
• Try the /goals endpoint with the token

This exercise should take between 5-7 minutes

Exercise: Bearer Token Auth



• Use more than one component
• Don’t inherit unwanted behavior
• Avoid spending your inheritance

Pulse Check: Composition

v
s



How are you 
representing scopes 
at your company?



• Modify UserRepositoryJwtAuthenticationConverter to turn 
the scope attribute into a list of GrantedAuthority instances

• Specify the converter in the Spring Security DSL

• Run Module4_Tests - the second and third tests should pass
• Try the POST /goal endpoint

• Did it work? Why?

This exercise should take between 5-7 minutes

Exercise: Canonicalize Authorities



Programmatic vs Declarative



Declarative
Decoupled from business 
logic

Logicless or low-logic

Framework-managed

Woven into business logic

The full Java language

You-managed

Programmatic



• Modify GoalController#read() to check the 
SecurityContextHolder for the user:read authority.

• If present, add the user’s full name to the result

• Run Module4_Tests - the fourth test should pass
• Try the GET /read endpoint to see the full name included
• Let’s discuss: Is there a way to avoid programmatic security?

This exercise should take between 5-7 minutes

Exercise: Programmatic Security



secure = false

Second Most Popular Spring 
Security (Testing) Hack



• Change the existing failing unit test by including the appropriate 
scope in the test configuration

• Add a test of your own

• The tests should pass
• Share what you tested on the discussion page

This exercise should take between 5-7 minutes

Exercise: Testing



Poll: Multi-tenancy

A user can log in to your app in multiple ways that all resolve to the same user 
(for example, Login in with Facebook)

A user can login and they are tied to a specific SaaS instance of your product (for 
example, a user logging in with me@nike.com would redirect them to your 
nike.yourapp.com instance)

A user can be logged into multiple instances of our app at once

A tenant gets full control over the authentication experience of their user base

We don’t support multiple tenants at this time

mailto:me@nike.com


Distributed Authorization 
with Opaque Tokens
JWT’s more secure, less performant cousin



Opaque Authentication Flow
Client Resource Server Authorization Server

/private

401 Unauthorized

/authoriz
e

access_token

/private
with access_token

200 
OK

/introspect

active: true



JWT
By Value

Occasional Authorization 
Server calls

Client can see values

Can’t expire immediately

By Reference

Frequent Authorization 
Server calls

Client can’t see values

Can expire immediately

Opaque



• Add the com.nimbusds:oidc-oauth2-sdk dependency
• Add .opaquetoken.introspection-uri, .client-id, and 

.client-secret
• Change oauth2ResourceServer to specify opaquetoken

• Run Module5_Tests - the first test should pass
• Try the /goals endpoint with the token

This exercise should take between 5-7 minutes

Exercise: Opaque Tokens



• Modify the UserRepositoryOpaqueTokenIntrospector add a 
GrantedAuthority called goal:share that’s derived from 
whether or not the User has a premium subscription.

• Run Module5_Tests - the second and third tests should pass
• Try the POST /share endpoint to share a goal with another user

This exercise should take between 5-7 minutes

Exercise: Normalize Authorities



Identity Federation

Your App

LinkedIn

Google

Facebook

One User Multiple Sources



SaaS

Your App

Okta

One User One Source

Your App

Your App

nike.yourapp.com



SaaS + Whitelabeling

Your App Okta

One User One Source

Your App

Your App

Okta

Okta

nike.yourapp.com



• Complete the JwtOpaqueTokenAuthenticationManagerResolver 
so it looks for a header called tenant. If the tenant is one, return 
the jwtAuthenticationManager. Otherwise, return the 
opaqueTokenAuthenticationManager.

• Change the DSL to use the authenticationManagerResolver 
instead of jwt.

• Run Module5_Tests - the fourth test should pass

This exercise should take between 5-7 minutes

Exercise: Multi-tenancy



Egress
Collaborating with Other REST APIs



Browsers 
Propagate
Cookies

Authorization: Basic
creds

Authorization: Bearer
creds

But Not



• Remove the withCredentials attribute from @CorsMapping

• Start up the front-end application and navigate to 
http://localhost:8081/bearer.htm to confirm that the application 
works

• Run Module6_Tests - the first test should pass

This exercise should take between 5-7 minutes

Exercise: CORS

http://localhost:8081/bearer.htm


• Complete the WebClient configuration by including 
ServletBearerExchangeFilterFunction as a filter.

• In GoalController, replace the UserRepository dependency 
with UserService.

• Change the read() method to find the user’s full name using
UserService.

• Run Module6_Tests - the second test should pass

This exercise should take between 5-7 minutes

Exercise: Passing the token



ServletOAuth2AuthorizedClient
ExchangeFilterFunction

What If I Need to Renew the 
Token?



Thank you!

https://{gh}/jzheaux/oreilly-spring-securing-rest-apis
https://{gh}/spring-projects/spring-security
Josh Cummings - @jzheaux

https://github.com/jzheaux/oreilly-spring-securing-rest-apis
https://github.com/spring-projects/spring-security
https://twitter.com/jzheaux
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Thank you


